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1 Parametric Inference

Parametric inference is a statistical method used to estimate the parameters of a population distribution
based on a sample. The process can be summarized as follows:

Figure 1: Parameter Inference

• Population: The entire set of data points, characterized by a distribution F (θ), where θ repre-
sents the parameters of the distribution.

• Sample: A subset of the population, from which observations are drawn.

• Observation: The actual data points collected from the sample.

• Inference: Using the observations to estimate the parameters θ of the population distribution.

2 Examples of Parametric Models

2.1 Example 1: Bernoulli distribution (Ber (P))

The Bernoulli distribution is a discrete distribution with a single parameter P , which represents the
probability of success.

• The population follows Ber(P ), and the sample is used to estimate P .
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2.2 Example 2: Linear Regression Model

Given data points {ξi = (xi, yi)}ni=1 for i = 1, 2, . . . , n, the relationship between x and y is modeled as:

r(x) = θTx+ ϵ.

where θ is the parameter vector to be estimated.

2.3 Example 3: Large Language Models (Parametric Models)

In large language models, the goal is to predict the next token ωn+1 given a sequence of tokens
ω1, ω2, . . . , ωn.

The probability of the sequence is given by:

P(w1, w2, . . . , wn) = P(w1)P(w2|w1)P(w3|w1, w2) · · ·P(wn|w1, w2, . . . , wn−1).

P(w1, w2, . . . , wn) =
n∏

i=1

P(wi|w1, w2, . . . , wi−1).

This is an example of a parametric model where the parameters are learned from data.

3 Moment Estimation

Moment estimation is a method for estimating the parameters of a distribution by matching the sample
moments to the theoretical moments.

Let θ = (θ1, θ2, . . . , θk)
T be the parameter vector. The steps for moment estimation are:

1. Step 1: Define the theoretical moments:

αk(θ) = Eθ[X
k] =

∫
XkdFθ(X), 1 ≤ k ≤ K.

2. Step 2: Compute the sample moments:

α̂k =
1

n

n∑
i=1

xk
i .

3. Step 3: Set the theoretical moments equal to the sample moments and solve for θ:

αk(θ̂) = α̂k, (k = 1, 2, . . . ,K).
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3.1 Examples of Moment Estimation

3.1.1 Example 1: Bernoulli Distribution (Ber(P))

The first moment (mean) of the Bernoulli distribution is:

α1(p) = E[X] = P.

The sample mean is:

α̂1 =
1

n

n∑
i=1

xi = xn.

Therefore, the moment estimator for P is:

P̂ = α̂1 = xn.

3.1.2 Example 2: Normal Distribution N(µ, σ2)

For a normal distribution with mean µ and variance σ2, the first two moments are:

α1(θ) = E[X] = µ,

α2(θ) = E[X2] = µ2 + σ2.

The sample moments are:
α̂1 =

1

n

∑
xi = xn,

α̂2 =
1

n

∑
x2
i .

The moment estimators for µ and σ2 are:

µ̂ = α̂1 = xn,

σ̂2 = α̂2 − (α̂1)
2 =

1

n

∑
(xi − xn)

2.

Note that this estimator for σ2 is biased.

4 Maximum Likelihood Estimation (MLE)

Maximum likelihood estimation is a method for estimating the parameters of a statistical model by
maximizing the likelihood function.

Given a sample X1, X2, . . . , Xn drawn independently and identically distributed (i.i.d.) from a distri-
bution F0(x), the goal is to find the parameter θ that maximizes the likelihood function:

max
n∏

i=1

fθ(xi).
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where fθ(xi) is the probability density function (PDF) or probability mass function (PMF) of the
distribution.

This is equivalent to maximizing the log-likelihood function:

max
n∑

i=1

log fθ(xi). ⇐⇒ min−
n∑

i=1

log fθ(xi).

4.1 Examples of Maximum Likelihood Estimation

4.1.1 Example 1: Bernoulli Distribution (Ber(P))

1. Bernoulli Distribution (Ber(p))

The Bernoulli distribution models a random variable X that takes the value 1 with probability p and
the value 0 with probability 1− p.

• Probability Mass Function (PMF):

fθ(xi) = pxi(1− p)1−xi .

where xi ∈ {0, 1}.

• Likelihood Function: The likelihood function for a sample of n independent observations
x1, x2, . . . , xn is:

n∏
i=1

fθ(xi) = p
∑

xi(1− p)
∑

(1−xi).

2. Log-Likelihood Function

To simplify the maximization, we take the natural logarithm of the likelihood function:

logL(p) =
n∑

i=1

xi log p+
n∑

i=1

(1− xi) log(1− p).

• Objective: Maximize the log-likelihood function with respect to p:

max
p

(
n∑

i=1

xi log p+
n∑

i=1

(1− xi) log(1− p)

)
,

subject to 0 < p < 1.

• Equivalent Minimization Problem:

min
p

(
−

n∑
i=1

xi log p−
n∑

i=1

(1− xi) log(1− p)

)
.
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3. Derivative and Optimization

To find the maximum likelihood estimate (MLE) of p, we take the derivative of the log-likelihood
function with respect to p and set it to zero:

d

dp
logL(p) = 1

n

n∑
i=1

xi ·
1

p
− 1

n

n∑
i=1

(1− xi) ·
1

1− p
= 0.

Solving for p:

1

n

n∑
i=1

xi ·
1

p
=

1

n

n∑
i=1

(1− xi) ·
1

1− p
.

p̂ =
1

n

n∑
i=1

xi = xn.

4. Conclusion

The maximum likelihood estimate (MLE) of p is the sample mean of the observed data:

p̂ = xn.

4.1.2 Example 2: Normal Distribution N(µ, σ2)

1. Probability Density Function(PDF)

The normal distribution, also known as the Gaussian distribution, is characterized by its mean µ and
variance b2. The probability density function (PDF) for a normal distribution is given by:

f(x;µ, σ2) =
1√
2πσ2

exp
(
−(x− µ)2

2σ2

)
.

2. Likelihood Function

For a sample of n independent observations x1, x2, . . . , xn, the likelihood function is the product of the
individual PDFs:

L(µ, σ2) =
n∏

i=1

f(xi;µ, σ
2) =

(
2πσ2

)−n
2 exp

(
− 1

2σ2

n∑
i=1

(xi − µ)2

)
.

3. Log-Likelihood Function

To simplify the maximization, we take the natural logarithm of the likelihood function:
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logL(µ, σ2) = −n

2
log(2π)− n

2
log(σ2)− 1

2σ2

n∑
i=1

(xi − µ)2.

4. Maximization with Respect to µ and σ2

To find the maximum likelihood estimates (MLE) of µ and σ2, we take the partial derivatives of the
log-likelihood function with respect to µ and σ2 and set them to zero.

• Partial Derivative with Respect to µ:

∂

∂µ
logL(µ, σ2) =

1

σ2

n∑
i=1

(xi − µ) = 0.

Solving for µ:

µ̂ =
1

n

n∑
i=1

xi = x.

• Partial Derivative with Respect to σ2:

∂

∂σ2
logL(µ, σ2) = − n

2σ2
+

1

2(σ2)2

n∑
i=1

(xi − µ)2 = 0.

Solving for σ2:

σ̂2 =
1

n

n∑
i=1

(xi − µ̂)2.

5. Conclusion

The maximum likelihood estimates (MLE) for the parameters of the normal distribution are:

µ̂ = x,

σ̂2 =
1

n

n∑
i=1

(xi − x)2.

4.1.3 Example 3: Linear Regression Model

In statistics, linear regression is a method for modeling the relationship between a dependent variable yi

and one or more independent variables xi. The linear relationship between yi and xi can be expressed
as:

yi = βTxi + ξi, ξi|xi ∼ N(0, 1).

where β is a vector of coefficients, xi is a vector of independent variables, and ξi is a random error term
with a normal distribution with mean 0 and variance 1.
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The likelihood function for this model is given by:

n∏
i=1

1√
2π

exp
(
−(yi − βTxi)

2

2

)
.

This function measures the probability of observing the data given the parameters β.

To simplify the maximization of the likelihood function, we often work with the log-likelihood function:

log
(

n∏
i=1

1

sqrt2π
exp

(
−(yi − βTxi)

2

2

))
= log (2π)−

n
2 −

n∑
i=1

(
yi − βTxi

)2
.

Maximizing the log-likelihood function is equivalent to minimizing the sum of squared residuals:

min
β

n∑
i=1

(yi − βTxi)
2.

This can be written in matrix form as:

min
β

∥Y −Xβ∥2.

where Y is an n× 1 vector of dependent variables and X is an n× p matrix of independent variables.

Steps to Maximize the Likelihood Function

1. Write down the likelihood function Ln(θ) =
∏n

i=1 fθ(xi).

2. Take the natural logarithm of the likelihood function to obtain the log-likelihood function ln(θ) =∑n
i=1 log fθ(xi).

3. Maximize the log-likelihood function, which is equivalent to minimizing − ln(θ).

4. Solve for the parameters θ that minimize − ln(θ). For unconstrained optimization problems, this
can be done using techniques such as gradient descent or Newton’s method.

5 Properties of MLE

5.1 Likelihood Function

The log-likelihood for n observations is given by:
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ℓn(θ) =
n∑

i=1

log fθ(Xi).

The MLE θ̂n is the value of θ that maximizes the log-likelihood function:

θ̂n = arg max
θ∈Θ

ℓn(θ).

5.2 Kullback-Leibler Divergence

The Kullback-Leibler (KL) divergence is a measure of the difference between two probability distribu-
tions. The empirical KL divergence for a sample of size n is defined as:

Dn(θ
∗, θ) =

1

n

n∑
i=1

log fθ∗(Xi)

fθ(Xi)
.

Properties of the KL divergence include:

• D(θ∗, θ) ≥ 0 with equality if θ = θ∗.

• Asymmetric: D(θ∗, θ) ̸= D(θ, θ∗).

5.3 Key Assumptions

For the consistency of MLEs, the following assumptions are typically made:

A1. Uniform convergence:
sup
θ∈Θ

|ℓn(θ)− E[log fθ(X)]| p→ 0.

A2. Identifiability: For any ϵ > 0,

sup
∥θ−θ∗∥≥ϵ

E[log fθ(X)] < E[log fθ∗(X)].

5.4 Consistency Theorem

Under assumptions A1 and A2, the MLE θ̂n converges in probability to the true parameter θ∗ as the
sample size n tends to infinity:

θ̂n
p→ θ∗ as n → ∞.
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�By Law of Large Numbers:extbf
1

n
ℓn(θ)

p→ E[log fθ(X)].

A2 implies θ∗ is unique maximizer. Combined with A1, we get:

∥θ̂n − θ∗∥ < ϵ with probability → 1.

5.5 Definitions

Let X1, . . . , Xn
iid∼ fθ(x), where θ ∈ Θ ⊆ Rd.

• Score Function:The score function Sθ(x) is the gradient of the log -likelihood function with
respect to θ:

Sθ(x) = logfθ(x) =
∇θfθ(x)

fθ(x)
.

• Fisher Information Matrix:The Fisher Information Matrix I(θ) is the variance of the score
function:

I(θ) = Var[Sθ(X)] = −E
[
∇2

θ log fθ(X)
]
.

5.6 Key Properties

1. The mean of the score function is zero: The score function Sθ(x) = ∇θ log fθ(x) measures
the sensitivity of the log-likelihood to parameter changes. Remarkably, its expectation is always
zero under the true distribution. This follows from:

E[Sθ(X)] =

∫
∇θfθ(x)

fθ(x)
fθ(x) dx =

∫
∇θfθ(x) dx.

Here we used the definition of expectation and canceled fθ(x) terms. Crucially, we can interchange
integration and differentiation:

∇θ

∫
fθ(x) dx︸ ︷︷ ︸

=1

= ∇θ(1) = 0.

This shows the score function is centered – positive and negative sensitivities balance out in
expectation.

2. Fisher Information Matrix (FIM) has dual representations:

The FIM I(θ) quantifies information about θ in the data. It has two equivalent expressions:
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• Variance of the score:

I(θ) = Var(Sθ(X)) = E[Sθ(X)Sθ(X)⊤].

This measures the dispersion of the score function. A ”peakier” likelihood surface corresponds
to higher information.

• Negative expected Hessian:

I(θ) = −E
[
∇2

θ log fθ(X)
]
.

This characterizes the curvature of the log-likelihood. The Hessian’s eigenvalues indicate
sensitivity along different parameter directions.

Connecting the representations: For n i.i.d. observations, the total log-likelihood ln(θ) =∑n
i=1 log fθ(xi) has variance:

Var(ln(θ)) = nI(θ) = −E[∇2
θln(θ)].

This shows information accumulates linearly with sample size.

Derivation of equivalence: Starting from the score function definition Sθ(x) = ∇θ log fθ(x),
compute the second derivative:

∇2
θ log fθ(x) =

∇2
θfθ(x)

fθ(x)
− ∇θfθ(x)∇θfθ(x)

⊤

fθ(x)2
.

Taking expectation over X ∼ fθ:

E
[
∇2

θ log fθ(X)
]
=

∫ (
∇2

θfθ(x)

fθ(x)
− ∇θfθ(x)∇θfθ(x)

⊤

fθ(x)2

)
fθ(x) dx

=

∫
∇2

θfθ(x) dx− E[Sθ(X)Sθ(X)⊤]

= ∇2
θ

∫
fθ(x) dx︸ ︷︷ ︸

=1

−I(θ)

= 0− I(θ) = −I(θ).

The critical step uses differentiation under the integral sign (requiring regularity conditions). This
establishes I(θ) = −E[Hessian], completing the duality.
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