Statistics Lecture 9 - 03/20/2025

Lecture 9: Parameter Inference

Lecturer: Xiangyu Chang Scribe: Haige Zheng, Wang Miao

Edited by: Zhihong Liu

1 Parametric Inference

Parametric inference is a statistical method used to estimate the parameters of a population distribution

based on a sample. The process can be summarized as follows:

sample
population observation

inference

Figure 1: Parameter Inference

o Population: The entire set of data points, characterized by a distribution F(6), where 6 repre-

sents the parameters of the distribution.
e Sample: A subset of the population, from which observations are drawn.
¢ Observation: The actual data points collected from the sample.

e Inference: Using the observations to estimate the parameters 6 of the population distribution.

2 Examples of Parametric Models

2.1 Example 1: Bernoulli distribution (Ber (P))

The Bernoulli distribution is a discrete distribution with a single parameter P, which represents the

probability of success.

o The population follows Ber(P), and the sample is used to estimate P.



2.2 Example 2: Linear Regression Model

Given data points {&; = (x;,y;)}1, for i = 1,2,...,n, the relationship between x and y is modeled as:
r(r) =0Tz + e

where 6 is the parameter vector to be estimated.

2.3 Example 3: Large Language Models (Parametric Models)

In large language models, the goal is to predict the next token w,i; given a sequence of tokens

Wi, W,y ... yWnp.
The probability of the sequence is given by:
P(wq, wa, ..., w,) = P(w)P(ws|w)P(ws|wy, wa) - - - P(wy, |wy, wa, . ..y wp—1).

}P’(’wl,wg, Cen ,wn) = HIP’(wi|w1,w2, Ce ,wi_l).

i=1
This is an example of a parametric model where the parameters are learned from data.
3 Moment Estimation

Moment estimation is a method for estimating the parameters of a distribution by matching the sample

moments to the theoretical moments.

Let 0 = (61,0, ...,0;)" be the parameter vector. The steps for moment estimation are:

1. Step 1: Define the theoretical moments:

3. Step 3: Set the theoretical moments equal to the sample moments and solve for 6:

oan(0) = dy, (k=1,2,...,K).



3.1 Examples of Moment Estimation
3.1.1 Example 1: Bernoulli Distribution (Ber(P))

The first moment (mean) of the Bernoulli distribution is:

The sample mean is:

Therefore, the moment estimator for P is:

3.1.2 Example 2: Normal Distribution N(u,o?)

For a normal distribution with mean p and variance o2, the first two moments are:
a1(0) = E[X] = p,
ay(0) = E[X?] = p® + o°.

The sample moments are:

. 1 _
041:7} Ti = Tn,
n
1
g = — E xf
n

Note that this estimator for o2 is biased.

4 Maximum Likelihood Estimation (MLE)

Maximum likelihood estimation is a method for estimating the parameters of a statistical model by

maximizing the likelihood function.

Given a sample X1, X»,...,X,, drawn independently and identically distributed (i.i.d.) from a distri-

bution Fy(z), the goal is to find the parameter 6 that maximizes the likelihood function:

e [ fo(a).

i=1



where fy(x;) is the probability density function (PDF) or probability mass function (PMF) of the

distribution.

This is equivalent to maximizing the log-likelihood function:

maxilog fo(x;). <= min— ilog fo(x;).

=1 =1
4.1 Examples of Maximum Likelihood Estimation

4.1.1 Example 1: Bernoulli Distribution (Ber(P))

1. Bernoulli Distribution (Ber(p))

The Bernoulli distribution models a random variable X that takes the value 1 with probability p and
the value 0 with probability 1 — p.

o Probability Mass Function (PMF):
fo(xi) =p™ (1 —p)=.
where z; € {0,1}.

e Likelihood Function: The likelihood function for a sample of n independent observations

L1,L2y...,Ly 1S:

=1

2. Log-Likelihood Function

To simplify the maximization, we take the natural logarithm of the likelihood function:

log L(p) = Y x;logp+ Y (1 —x;)log(1 —p).
i=1 =1

e Objective: Maximize the log-likelihood function with respect to p:

max (Z x;logp + Z(l —x;)log(1 —P)> )

i=1 =1

subject to 0 < p < 1.

e Equivalent Minimization Problem:

min (— Zzl logp — Z(l —x;) log(1 —p)) .
b i=1 i=1



3. Derivative and Optimization

To find the maximum likelihood estimate (MLE) of p, we take the derivative of the log-likelihood

function with respect to p and set it to zero:

Solving for p:

4. Conclusion

The maximum likelihood estimate (MLE) of p is the sample mean of the observed data:

4.1.2 Example 2: Normal Distribution N(u,o?)

1. Probability Density Function(PDF)

The normal distribution, also known as the Gaussian distribution, is characterized by its mean p and

variance b?. The probability density function (PDF) for a normal distribution is given by:

f(@yp,0%) =

2. Likelihood Function
For a sample of n independent observations x1, s, ..., x,, the likelihood function is the product of the

individual PDFs:

L(p,0®) = [ [ f(wis . 0®) = (2m0?) "% exp (;‘2 > (@i— u)2> :

3. Log-Likelihood Function

To simplify the maximization, we take the natural logarithm of the likelihood function:



log L(p,0%) = —= 10g(27r) - — log 202 Z

4. Maximization with Respect to ;. and o?
To find the maximum likelihood estimates (MLE) of u and o2, we take the partial derivatives of the

log-likelihood function with respect to ¢ and o2 and set them to zero.

e Partial Derivative with Respect to u:

n

0 1
87 log L(p,0%) = 52 E:
Solving for u:
o1 _
= n E: = Z.

o Partial Derivative with Respect to o%:

0 n
D o L{p,0) =~

Solving for o?:

5. Conclusion

The maximum likelihood estimates (MLE) for the parameters of the normal distribution are:

4.1.3 Example 3: Linear Regression Model

In statistics, linear regression is a method for modeling the relationship between a dependent variable y;
and one or more independent variables x;. The linear relationship between y; and x; can be expressed

as:

=Bz +&, &lw ~ N(0,1).

where (3 is a vector of coefficients, x; is a vector of independent variables, and &; is a random error term

with a normal distribution with mean 0 and variance 1.



The likelihood function for this model is given by:

(yi — 5T$i)2) .

|
ex —
E Vor P ( 2

This function measures the probability of observing the data given the parameters .

To simplify the maximization of the likelihood function, we often work with the log-likelihood function:

n 1 - T ; 2 o n
8 (zl—[1 sqri2m P (_W>> = log (2m)"* Z (y’ - ﬁTxif'

=1

Maximizing the log-likelihood function is equivalent to minimizing the sum of squared residuals:

n
min D (yi— BT
i=1

This can be written in matrix form as:

min [V — X

where Y is an n x 1 vector of dependent variables and X is an n X p matrix of independent variables.

Steps to Maximize the Likelihood Function

1. Write down the likelihood function Ln(6) =[]\, fo(a:).

2. Take the natural logarithm of the likelihood function to obtain the log-likelihood function In(6) =
Z?:1 log fo(w;).
3. Maximize the log-likelihood function, which is equivalent to minimizing — In(#).

4. Solve for the parameters 6 that minimize —In(f). For unconstrained optimization problems, this

can be done using techniques such as gradient descent or Newton’s method.

5 Properties of MLE

5.1 Likelihood Function

The log-likelihood for n observations is given by:



£a(0) = D_log fo(Xi).

The MLE 6, is the value of § that maximizes the log-likelihood function:

0, = arg max 0,(0).

5.2 Kullback-Leibler Divergence

The Kullback-Leibler (KL) divergence is a measure of the difference between two probability distribu-

tions. The empirical KL divergence for a sample of size n is defined as:

fo- (X5)
Jo(Xs)

1 n
D,(0%,60) = — 1
(6",0) = ; og
Properties of the KL divergence include:

o D(0*,0) > 0 with equality if § = 6*.

o Asymmetric: D(6*,6) # D(8,0*).

5.3 Key Assumptions

For the consistency of MLEs, the following assumptions are typically made:

A1l. Uniform convergence:
sup |€,,(6) — E[log fo(X)]| - 0.
0€0

A2. Identifiability: For any € > 0,

sup  Eflog fo(X)] < Ellog fo- (X)].

10—06%[1=e

5.4 Consistency Theorem

Under assumptions Al and A2, the MLE én converges in probability to the true parameter 6* as the

sample size n tends to infinity:

A~

N

D,
L, — 0° asn — oo.



By Law of Large Numbers:extbf

~0a(0) % Ellog fo(X)).

A2 implies 6* is unique maximizer. Combined with Al, we get:

5.5

[0, —0*|| <€ with probability — 1.

Definitions

iid

Let Xi,...,X,, ~ fo(x), where § € © C R%.

5.6

Score Function:The score function Sy(z) is the gradient of the log -likelihood function with

respect to 6:

Vo fo(z)
Se(x) =lo .
0( ) gfe( ) f@(x)
Fisher Information Matrix:The Fisher Information Matrix I(6) is the variance of the score
function:
1(6) = Var[Sy(X)] = ~E [V3 log fu(X)] .
Key Properties

The mean of the score function is zero: The score function Sy(z) = Vylog fy(x) measures
the sensitivity of the log-likelihood to parameter changes. Remarkably, its expectation is always

zero under the true distribution. This follows from:

Vofo(z)
Blsi(¥) = [ S @ de = [Vsita

Here we used the definition of expectation and canceled fy(x) terms. Crucially, we can interchange

integration and differentiation:

=1

This shows the score function is centered — positive and negative sensitivities balance out in

expectation.

Fisher Information Matrix (FIM) has dual representations:

The FIM I(6) quantifies information about € in the data. It has two equivalent expressions:



e Variance of the score:
1(0) = Var(S(X)) = E[Ss(X)Ss(X) ]
This measures the dispersion of the score function. A "peakier” likelihood surface corresponds

to higher information.

e« Negative expected Hessian:
16) = —E [V log fo(X))

This characterizes the curvature of the log-likelihood. The Hessian’s eigenvalues indicate

sensitivity along different parameter directions.

Connecting the representations: For n i.i.d. observations, the total log-likelihood 1, (6) =

22;1 log fo(x;) has variance:
Var(l,(0)) = nI(6) = —E[V31.(0)].

This shows information accumulates linearly with sample size.

Derivation of equivalence: Starting from the score function definition Sy(x) = Vylog fo(x),

compute the second derivative:

Vifolx)  Vofo(x)Vefo(z)" _

Vz 1ng0($) = fo(ﬂU) f0($)2

Taking expectation over X ~ fy:

E [V31og X)) = [ (Vjﬁfg ) o] efszgew) folw) do

_ /ngg(x) dz — B[Sp(X)Sp(X)7]

—Vg/fg(m) dx —1(0)

| —
=1

—0—I(8) = —1(6).

The critical step uses differentiation under the integral sign (requiring regularity conditions). This

establishes 1(0) = —E[Hessian], completing the duality.
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